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1 Introduction

Lie algebras are one of the significant entities of the modern theory of non-
associative algebras. After several researches and explorations in the field of
Lie algebras, some generalisations of these algebras have been observed, namely
Lie superalgebras, Binary Lie algebras, Leibniz algebras, Malcev algebras, and
so on.

According to the study [2] carried out by J. L. Loday on categorical charac-
teristics of Leibniz algebras, it is concluded that Zinbiel algebra (read Leibniz
in the reverse order) is a new object in this connection. Sometimes Zinbiel
algebras are also referred to as dual Leibniz algebras because the category of
Zinbiel algebras is Koszul dual to the Leibniz algebras [1].

Some interesting characteristics of Zinbiel algebras are highlighted in the
works [3, 4]. Specifically, the nilpotency of an arbitrary complex Zinbiel alge-
bra with finite dimensions was established in the work [4]. The examples of
Zinbiel algebras are provided in the works [4, 2, 1].

In quantum mechanics, the central extensions play a significant role. The
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Wigner’s theorem used in one of the earlier encounters indicates that a symme-
try of a quantum mechanical system ascertains an anti-unitary conversion of
a Hilbert space. The quantum theory of conserved currents of a Lagrangian is
another field of physics where central extensions are applied. These extensions
are closely associated to the so-called affine Kac Moody algebras, which are
referred to as the universal central extensions of loop algebras.

In general, since the symmetry group of a quantised system is a pivotal ex-
tension of the classical symmetry group, it makes it necessary to have central
extensions in physics. Similarly, the corresponding symmetry Lie algebra of
the quantum system is a key extension of the classical symmetry algebra. The
representation of symmetry groups in a unified superstring theory is achieved
by Kac Moody algebras. In the quantum field theory, the centrally extended
Lie algebras have a dominant role to play, specifically with respect to the M -
theory, string theory, and conformal field theory.

According to the theory of Lie groups, and representation of Lie algebras,
a Lie algebra extension refers to an expansion caused by a Lie algebra h to
a particular Lie algebra g. There are numerous ways in which extensions can
occur. By considering the direct sum of two Lie algebras, a trivial extension
can arise. Central extension and split extension are some of the other types of
extension. Moreover, there is a likelihood that extensions can occur naturally
when developing a Lie algebra using representations of the projective group.
An extension occurring due to a derivation of a polynomial loop algebra over
finite-dimensional simple Lie algebra and a central extension renders a non-
twisted affine Kac Moody algebra to a Lie algebra which is isomorphic [5].

A current algebra over two space-time dimensions can be constructed using
the centrally extended loop algebra. The Heisenberg algebra refers to the cen-
tral extension of a commutative Lie algebra, and the Virasoro algebra refers
to the universal central extension of the Witt algebra [5, 6, 8].

To classify Zinbiel algebras over finite fields, an approach is explained in
this paper, which is comparable to the Skjelbred-Sund method is applied for
the classification of Lie algebras. 2-cocycles and the corresponding annihilator
extensions are recommended in all the cases. The base change action is defined
as an action that is applicable for automorphism group of small algebras on
cocycles. The recommended approach is new and provides a detailed list of
Zinbiel algebras in dimension 5.
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2 Extension of Zinbiel algebra via annihilator

In this section we introduced the concept of an annihilator extension of Zinbiel
algebras.

Definition 2.1. Zinbiel algebra is a vector space R together with a binary
operation ◦ : R×R −→ R satisfying the condition :

(x ◦ y) ◦ z = x ◦ (y ◦ z) + x ◦ (z ◦ y), for all x, y, z ∈ R (1)

Homomorphism of Zinbiel algebras is a linear transformation preserving
operations. The category of Zinbeil algebras as denoted by Zinb.
An ideal I of a Zinbiel algebra A satisfy IR ⊆ I and RI ⊆ I.

For a given Zinbiel algebra R, we define the following sequence:

R1 = R, Rk+1 = R ◦Rk; k ≥ 1

Definition 2.2. A Zinbiel algebra R is called nilpotent if there exists s ∈ N
such that Rs = 0. The minimal number s satisfying this property is called
index of nilpotency or nilindex of the algebra R.

Definition 2.3. For a given R, the ideal

Ann(R) =
{
a ∈ R : R ◦ a = a ◦R = 0

}
(2)

describe the annihilator of a R.

Definition 2.4. Let R1, R2 and R3 be Zinbiel algebras. The algebra R2 is
called an extension of R3 by R1 if there exist homomorphism α : R1 → R2 and
β : R2 → R3 such that the following sequence

0 −→ R1
α−→ R2

β−→ R3−→0 · · ·

Definition 2.5. An extension is called trivial if there exists an ideal I of R2

complementary to kerβ.

It may happen that there exist several extensions of R3 by R2. To classify
extensions the notion of equivalent extensions is defined.

Definition 2.6. The sequence

0 −→ R1
α−→ R2

∂2−→ R3−→0 · · ·

is called an annihilator extension if the kernal of β is contained in the
annihilator of R2. That is kerβ ⊂ Ann(R2).
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Definition 2.7. Two sequences

0 −→ R1
α−→ R2

β−→ R3−→0

0 −→ R1
α
′

−→ R2
β
′

−→ R3−→0

are called equivalent extensions if there exists an isomorphism f : R2 → R
′
2

such that f ◦ α = α
′

and β
′ ◦ f = β

Proposition 2.1. Let φ be an isomorphism between two Zinbiel algebras R1

and R2. Then for any k ∈ N; ϕ(Ann(Rk
1)) = Ann(Rk

2).

Proof. Considering an isomorphism, it implies

ϕ(Ann(Rk
1)) = ϕ

{
x ∈ R1|x ◦Rk

1 = Rk
1 ◦ x = 0

}
=

{
ϕ(x) ∈ ϕ(R1)|ϕ(x) ◦ ϕ(Rk

1) = ϕ(Rk
1) ◦ ϕ(x) = 0

}
=

{
y ∈ R2|y ◦Rk

2 = Rk
2 ◦ y = 0

}
= Ann(Rk

2).

3 Cocycles on Zinbiel algebras

In this section we propose the concept of 2-cocycle for Zinbiel algebras.

Definition 3.1. Let R be an algebra and V be a vector space over a field K.
A bilinear function ϕ : R×R→ V is said to be a Zinbiel 2-cocycle of R if

ϕ(x ◦ y, z) = ϕ(x, y ◦ z) + ϕ(x, z ◦ y) (3)

for all x, y and z ∈ R

The set of all 2-cocycle on Zinbiel algebra R with values in V is denoted
by Z2(R, V ).
It is easy to see that Z2(R, V ) is a vector space if one defines the vector space
operations as follows:

(ϕ1 ⊕ ϕ2)(x, y) = ϕ1(x, y) + ϕ2(x, y)

(k, ϕ)(x) = kϕ(x),

ϕ1, ϕ2 and ϕ ∈ Z2(R, V ), k ∈ K.
A linear combination of 2-cocycles again is a 2-cocycle. A special type of
2-cocycles given by the following proposition is called 2-coboundries.
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Proposition 3.1. Let η : R→ V be a linear map, define ϕ(x, y) = υ(λ(x, y)).
Then ϕ is a cocycle.

Proof. Let Us check the axioms:

ϕ(x ◦ y, z) = υ((x ◦ y) ◦ z)

= υ(x ◦ (y ◦ z) + x ◦ (z ◦ y))

= υ(x ◦ (y ◦ z)) + υ(x ◦ (z ◦ y))

= ϕ(x, y ◦ z) + ϕ(x, z ◦ y)

Let υ : R→ R be a linear map. Define η(x, y) = υ(λ(x, y)). Then η is a 2-
cocycle called coboundary on R with values in V is denoted by B2(R, V ) and
H2(R, V ) = Z2(R, V )/B2(R, V ) is called the second group of cohomologies
with values in V .

Theorem 3.1. Let e1, e2, · · · , ek be a basis of V , and 0 ∈ Z2(A, V ). Then, ϕ

can be uniquely written as ϕ(x, y) =
n∑
k=1

ϕi(x, y)ek, where ϕk ∈ Z2(A,K).

Proof. Consider any x, y ∈ R then ϕ(x, y) can be uniquely written as ϕ(x, y) =
n∑
k=1

αkek, where αi ∈ K. For each k = 1, 2, · · · , n, define a bilinear form

ϕk : A × A → K by ϕk(x, y) = αk. Then, ϕ(x, y) =
n∑
k=1

ϕk(x, y)ek. Moreover,

we have,

n∑
k=1

ϕk(x, y)ek = θ(x, y) = ϕ(y, x) =
n∑
k=1

ϕk(y, x)ek,

n∑
k=1

ϕk((x ◦ y) ◦ z)ek =
n∑
k=1

ϕ(x ◦ (y ◦ z) + x ◦ (z ◦ y))ek

Therefore, for every k = 1, · · · , s ϕk(x, y) = ϕk(y, x) and ϕk((x ◦ y) ◦ z) =
ϕ(x ◦ (y ◦ z) + x ◦ (z ◦ y)). Consequently, ϕk ∈ Z2(R,K) for k = 1, · · · , n. For

uniqueness, let ϕ(x, y) =
n∑
k=1

ϑk(x, y)ek. Then
n∑
k=1

(ϕk − ϑk)(x, y)ek = 0. Since

e1, · · · , ek are linearly independent, it follows that (ϕk − ϑk)(x, y) = 0 for all
x, y ∈ R, k = 1, · · · , n. Hence ϕk − ϑk = 0 for k = 1, · · · , n.

Let ϕ ∈ Z2(A, V ). The set ϕ⊥ =
{
x ∈ A : ϕ(x, y) = 0, for all y ∈ A

}
is called the radical of ϕ.
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Theorem 3.2. Let (R, λ) be a Zinbiel algebra, V a vector space over K,

ϕ : R×R→ V

be a bilinear map. Let Rϕ = R⊕ V . For x, y ∈ R, v, w ∈ V we define

λϕ(x+ v, y + w) = λ(x, y) + ϕ.

Then Rϕ is a Zinbiel algebra if and only if ϕ is a 2-cocycle of R.

Proof. The proof is straightforward by using definitions of 2-cocycle of R.

4 Methods

There is an action of Aut(L) on Z2(R,K) as follows: let φ ∈ Aut(R) and
θ ∈ Z2(R,K) then

(φ, θ)(x, y) = θ(φ(x), φ(y))

Let assume that Gm(H2(R,K)) be the Grassmanian of subspaces of dimension
m in HL2(R,K). The action above can be extended to Gm(H2(R,K)) as
follows: suppose that φ ∈ Aut(L) and

T = (θ1, θ2, θ3, · · · , θs) ∈ Gm(H2(R,K))

.
We define

φ · T (φθ1 · φθ2 · φθ3, · · · , φθs)

It follows that, φ·T ∈ Gm(HL2(L,K)). Let express the orbit of T ∈ Gm(HL2(L,K))
under the action of group automorphism AutL on Gm(HL2(L,K)) as Orb(T ).
We have the following lemmas.

Lemma 4.1. Let T1 and T2 be two elements of Gm(H2(R,K)) defined by
T1 =< θ1, θ2, θ3, · · · , θm > and T2 =< ϑ1, ϑ2, ϑ3, · · · , ϑm >. If T1 = T2. then

∩mi = 1θ
⊥
i ∩ Ann(R) = ∩mi = 1ϑ

⊥
i ∩ Ann(R)

As a consequence of Lemma 4.1 above, we define the subspace
Wm(L) = {T =< θ1, θ2, θ3, · · · , θm >∈ Gs(H

2(R,K)) : ∩mi = 1θ
⊥
i ∩ Ann(R) =

0}
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Example 4.1. The Zinbiel algebra R with non-zero e1e1 = e2 between the basis
elements e1, e2 is central extension of the abelian algebra Ke1 ×Ke1 by Ke2,
given bilinear form

∆11 : (x1e1 + x2e2, y1e1 + y2e2)→ x1y1

Example 4.2. The Zinbiel algebra with non-zero e1e1 = e3 between the basis
elements e1, e2 and e3 is a central extension of R from the previous example:
Aut(R) consists of all operators

Φ =

[
a11 0
a21 a211

]
H2(R,K) consist of θ = a∆21. Moreover, θ⊥ ∩ Ann(R) = 0 if and only if

a 6= 0. The automorphism group acts as follows a → aa211. Then we choose
a11 = 1

3√a such that a is mapped to 1 this yield e1e1 = e3.

5 Applications

Let R be a Zinbiel algebra and Ann(R
′
) be its annihilator which we suppose to

be nonzero. Set V = Ann(R
′
) and R = R

′
/Ann(R

′
) Then there is a such that

R
′

= Rθ. We conclude that any Zinbiel algebra with a nontrivial annihilator
can be obtained as an annihilator extension of a Zinbiel algebra of smaller
dimension. So in particular, all nilpotent Zinbiel algebras can be constructed
by this way.

Procedure: Let R be a Zinbiel algebra of dimension n − s. The procedure
outputs all nilpotent Zinbiel algebras R

′
of dimension n such that R

′
/Ann(R

′
).

It runs as follows:

• Determine Z2(R,K), B2(R,K) and H2(R,K)

• Determine the orbits of Aut(R) on s-dimensional subspaces of H2(R,K).

• For each of the orbits let θ be the cocycle corresponding to a represen-
tative of it, and construct Rθ.

Finally, let us introduce some notation. Let R be a Zinbiel algebra with a basis
e1, e2, e3, · · · , en. Then by ∆ij : R×R→ C with ∆ij(es, et) = 1 if {i, j} = {s, t}
and ∆ij(es, et) = 0 if {i, j} 6= {s, t}. Then the set {∆ij : 1 ≤ i ≤ j ≤ n} is a
basis for the vector of the bilinear forms on R. Then every θ ∈ Z2(R,K) can
be uniquely written as θ =

∑
1≤i≤j≤n

cij∆ij, where cij ∈ C. In this part we make

use the description of three and four dimensional Zinbiel algebras over C in [8]
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6 Central extension of three dimensional Zin-

biel algebras

The algebraic classification of three-dimensional Zinbiel algebras. There ex-
ists only one three-dimensional nilpotent Zinbiel algebra. We have the list
of all three-dimensional nilpotent Zinbiel algebras as follows: The annihila-

R Isomorphism class H2(R,C) Aut(R)

R3,3 e1e1 = e3, e1e1 = e3 ∆12,∆13,∆33

a22a33 a12 0
0 a22 0
0 0 a33


R3,6 e1e1 = e3, e1e2 = e3, e2e2 = e3 ∆11,∆12

 a233 0 a13
a13a33 1 a23

0 0 a33


tor Extension of R3,3 : e1e1 = e3, e1e1 = e3. The basis of HL2(L,K) =
span{∆1,3,∆2,2,∆3,2,∆3,3}. The annihilator Ann(R3,3) = span{e1}. By The-
orem, we need to find the representatives of Aut(R3,3)-orbit on W4(R3,3).
Choose an arbitrary subspace T ∈ W9(R3,3).
θ = [a, b, c, d] = a∆1,2 + b∆2.2 + c∆3,2 + d∆3,3, such that θ⊥ ∩ {e1} = 0.
The automorphism group, Aut(A3,9) consist of matric of the form

φ =

 a22a33 a12 0
0 a22 0
0 0 a33

with a22a33 6= 0

The automorphism group φ act on T as follows:
a→ aa22a

2
33, b→ ba222, c→ ca22a33 and d→ da233

We now consider the following cases:
Case 1: If b 6= 0.

Case 1.1: Let a = 0. By taking a33 = 1 and a22
1

c
, we have c→ 1. To fix c = 1

requires a22 = 1. Then
a→ 0, b→ b

c2
= a, c→ 1 and d→ d.

In this case we obtain the representative T1 = [a, b, c, d] = [0, a, 1, 0].
Hence we get the algebra

e2e2 = ae4, e2e3 = e1, e3e2 = e4

.
Case 1.2: Let a 6= 0. By Taking a22 = 1

aa233
, we have a → 1 and to fix it

require that a22 = 1. So we have
a→ 1, b→ b

a33
, c→ c

a33
and d→ d

a33
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Case 1.2.1 : Assume that c = 0. Setting a33 = b, we have
a→ 1, b→ 1, c→ 0 and d→ d

b

If d
b

= 0 we get
a→ 1, b→ 1, c→ 0 and d→ 0
This, give rise to the following representative T2 = [a, b, c, d] = [1, 1, 0, 0].
Hence we get the algebra

e1e3 = e4, e2e2 = e4, e2e3 = e1

.
Case 1.2.2: Assume that c 6= 0. Setting a33 = c, we have
a→ 1, b→ b

c
, c→ 1 and d→ d

c

Taking
d

c
= 0 we have

a→ 1, b→ b
c

= a, c→ 1 and d→ 0
Thus, we get the following representative T4 = [a, b, c, d] = [0, a, 1, 0]. Hence
we get the algebra

e1e3 = e4, e2e2 = ae4, e2e3 = e1, e3e2 = e4

Case 2: By taking b = 0. Setting a33 = 1,
1

2
we obtain a → 1 and to fix it

requires a22 = 1. Hence

a→ 0, b
b

c
, c→ c and d→ d

Now get we have the following representative T4 = [a, b, c, d] = [0, α, 1, 0].
Hence we get the algebra

e2e2 = αe4, e2e3 = e1, e3e2 = e4

.
Similarly algebra for β = 0, 1. Then we the following algebras:

e1e3 = e4, e2e1 = αe4, e2e3 = e1, e3e2 = e4

For α ∈ C, we have the following algebras:
R4,1 : e1e3 = e4, e2e3 = e1, e3e2 = e4,
R4,2 : e1e2 = e4, e2e1 = e4, e2e2 = e1, e3e2 = e4,
R4,3 : e1e3 = e4, e2e1 = e4, e2e3 = e1, e3e2 = e4.

and for β = 2 in equa-

tion 4, we have
R4,4 : e2, e2 = e4, e2, e3 = e1 e3, e2 = 2e4 The annihilator extension ofR3,6 :
e1e1 = e3, e1e2 = e3, e2e2 = e3. Here we get the basis of HL2(R,K) =
span{∆2,3}. Furthermore, the annihilator Ann(R3,6) = span{e2}.
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According to Theorem we need to find the representatives of Ann(R3,6)-orbit
on W6(R3,6). Consider an arbitrary subspace T ∈ W6(R3,6) i.e, a subspace
spanned by

θ(α) = a∆2,3 such that θ⊥ ∩ {e1} = {0}

The automorphism group, Aut(R3,6) consists of matrices of the form

φ =

 a233 0 a13
a13a33 1 a23

0 0 a33

with a33 6= 0

Then, θ acts on T as follows:
a→ aa33

Assume that, a 6= 0. If a33
1

a
, then we have a → 1. To fix a = 1, we require

a33 = 1. Then we get a representative T1 = [α] = [1]. So we get the following
algebra:
R4,5 : e1e3 = e2, e2e3 = e4 e3e3 = e1

7 Central extension of four dimensional Zin-

biel algebras

The algebraic classification of four dimensional Zinbiel algebras as follows: The

R Isomorphism class H2(R,C) Aut(R)

R4,4 e1e2 = e3, e1e3 = e4, e2e1 = −e3 ∆12,∆21,∆22,∆41


a11 0 0 0
α21 a22 0 0
a31 0 a211 0
a41 a42 a31 a311


R4,7 e1e2 = e3, e1e2 = e4 ∆12,∆22,∆44 -

R4,12 e1e2 = e3, e2e1 = e4 ∆11,∆21,∆22,∆23


a11 0 0 0
a21 a22 0 0
a31 a32 a11a22 0
a41 a42 a11a32 a211a22


R4,16 e1e2 = e4, e2e1 = −e4, e3e3 = e4 ∆12,∆21,∆32


a11 0 0 0
a21 a211 0 0
a31 0 a211 0
a41 a42 a11a21 a311



central extension of R4,4 : e1e2 = e3, e1e3 = e4, e2e1 = −e3. Here we get the
basis of HR2(R,K) = span{∆12,∆21,∆22,∆41}. The automorphism group,
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Aut(R4,4) consists of matrices of the form

θ =


a11 0 0 0
α21 a22 0 0
a31 0 a211 0
a41 a42 a31 a311

 .

Then, φ acts on T as follows a→ aa311.

Suppose that, a 6= 0. Choosing a311 =
1

a
, then we have a→ 1. To fix a = 1, we

require a11 = 1. Then we get a representative T1 = [a] = [1]. So we get the
following algebra:
R5,1 : e1e1 = e3 e2e1 = e3 e3e1 = e4 e4e1 = e5 e2e2 = e4 − 2e5.

The algebraic classification of 5-dimensional nilpotent Zinbiel algebras as
follows:
R5,1 : e1e1 = e3 e2e1 = e3 e3e1 = e4 e4e1 = e5 e2e2 = e4 − 2e5
R5,2 : e1e2 = e3 e2e1 = −e3 e1e3 = e4 e3e1 = −e4 e1e1 = e5

e2e2 = e5 e1e4 = e5 e4e1 = −e5
R5,3 : e1e2 = e3 e2e1 = −e3 e1e3 = e4 e3e1 = −e4 e2e2 = e5

e1e4 = e5 e4e1 = −e5
R5,4 : e1e2 = e3 e2e1 = −e3 e1e3 = −e4 e3e1 = −e4 e2e1 = e5

e1e4 = e5 e4e1 = −e5
R5,5 : e1e2 = e3 e2e1 = −e3 e1e3 = e4 e3e1 = −e4 e1e1 = e5

e1e4 = e5 e4e1 = −e5
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